

Altair Lunar Lander

- 4 crew to and from the surface
 - Seven days on the surface
 - Lunar outpost crew rotation
- Global access capability
- Anytime return to Earth
- Capability to land 14 to 17 metric tons of dedicated cargo
- Airlock for surface activities
- Descent stage:
 - Liquid oxygen / liquid hydrogen propulsion
- Ascent stage:
 - Hypergolic propellants or liquid oxygen/methane

Lander Concept Trades

Detailed Approach for Design Team

- Developing an in-house design utilizing a risk based approach
- Agency wide team
- Design emphasis on the integrated vehicle versus elements
- Focused on Design ('D' in DAC)
 - Developed detailed Master Equipment List (over 6000 components)
 - Developed detailed Powered Equipment List
 - Produced sub-system schematics
 - NASTRAN analysis using Finite Element Models
 - Performed high-level consumables and resource utilization analysis
 - Sub-system performance analysis by sub-system leads
- Keep process overhead to the minimum required
 - Recognizing that a small, dynamic team doesn't need all of the process overhead that a much larger one does
 - But.... It still needs the basics

Minimum Functionality/Risk-Informed Design Approach

- Altair took a true risk informed design approach, starting with a minimum functionality design and adding from there to reduce risk.
- "Minimum Functionality" is a design philosophy that begins with a vehicle that will perform the mission, and no more than that
 - Does not consider contingencies
 - Does not have added redundancy ("single string" approach)
 - Provides early, critical insight into the overall viability of the end-to-end architecture
 - Provides a starting point to make informed cost/risk trades and consciously buy down risk
 - A "Minimum Functionality" vehicle is NOT a design that would ever be contemplated as a "flyable" design!

Lunar Lander Summary Schedule

Lander Design Analysis Cycles

- LDAC-1: Minimum Functional Vehicle
 - Habitation module/airlock embedded "mid-bay" within descent module structure
 - Designed for 8.4 meter Ares V shroud (7.5 meter diameter dynamic envelope)
- ◆ LDAC-1∆: Minimum Functional Vehicle with optimized descent module structure
 - Ascent module and airlock on top deck of "flatbed" lander
- LDAC-2: Safety/Reliability Upgraded Vehicle
 - Loss of Crew (LOC) risks addressed
 - Designed for 10 meter Ares V shroud (8.8 meter diameter dynamic envelope)

- LDAC-3: Upgraded Flyable Vehicle (currently in progress)
 - Loss of Mission (LOM) risks addressed
 - Global Access Capability
- Future LDACs: Additional Functionality; close gap with CARD requirements

Lunar Lander Design: Tradeoffs Among Many Competing Factors

- Delta-V large velocity changes for lunar descent, ascent
 - Large LOI velocity change with CEV attached
- Propellant tank size
 - Large H2 tanks packaging challenge
- Launch shroud diameter and length
 - "building a ship in a bottle"
- Launch and TLI loads control buckling, bending and stack frequencies
- c.g. control packaging propellant, stages and payloads to keep
 c.g. on/near centerline for vehicle control
- Ascent duration, life support, power, returned payload
- Fire in the hole
- Abort capabilities throughout all mission phases
- Crew access (both among modules and to surface)
- Cargo unloading and access
- Crew visibility for landing, docking

Lunar Orbit Insertion (LOI) Trade

- Changing the LOI function on Altair requires a dedicated 3rd stage
 - Small performance gains realized (additional mass performance) for options with more efficient staging fractions
 - Additional risk, DDT&E costs and parasitic mass outweigh the performance gains

Summary of Selected Options

	Reference	LV / LL Pair 2	LCCR*	LV / LL Pair 6	LV / LL Pair 7	LV / LL Pair 8
	P711-B LOX LH2 DM DM(LOI / Desc.)	P711-B LOX LH2 DM DM(LOI / Desc.)	P711-B LOX LH2 DM DM(LOI / Desc)	Non-LOI LOX LH2 DM DM(Desc.)	Non-LOI LOX LH2 DM ((LOI / Desc.)	Non-LOI LOX LH2 DM DM(LOI / Desc.)
	51.0.39 2 Liq Stage (2) 5 Seg SRB 5 Eng RS-68 EDS (Asc./ TLI)	51.0.62 2 Liq Stage 2 Lig Stage 5 Eng RS-68 5 Eng RS-68 EDS (Asc./ TLI) 1 J2X	51.0.47 2 Liq Stage (2) 5.5 Seg SRB 6 Eng RS-68 EDS (Asc/TLI) 1 J2X	51.0.62 2 Liq Stage (2) 5.5 Seg SRB 5 Eng RS-68 EDS (Asc/TL) 1 J2X	47.03.16 3 Liq Stage (2) 5 Seg SRB 6 Eng RS-6 5 Eng J2 D4 EDS (Asc, TLI / L) 0 C) 6 * RL-10 A4 *Eng Out	47.03.15 3 Liq Stage 3 Liq Stage 2 (2) 5 Seg SRB 6 Eng RS-68 5' Eng J2 D4 EDS (Asc/TLI/LOI) 6' RL-10 B2 'Eng Out
Altair+PL+MR+PLA (t) Altair w/ MR + PLA Sortie Mission	42.1+0.5+3.0+0.7 46.3 mt	42.1+0.5+3.0+0.7 46.3 mt	42.1+0.5+3.0+0.7 46.3 mt	25.3+0.5+2.5+0.4 28.7 mt	25.3+0.5+2.5+0.4 28.7 mt	25.3+0.5+2.5+0.4 28.7 mt
Ares V Perf (mt) TLI / LOI	63.6 / n/a	72.2 / n/a	74.7 / n/a	72.2 / 48.7	~70.5* / 54.5	~73.1* / 58.4
+/- Cum Margin (mt) (Ares -Orion -Altair Net - PLA) [TLI]	[+0.1]:[+0.1]	[+ 8.7]:[+3.0]	[+11.2]:[+3.0]	[+8.6]:[+2.5] (0.7 mf)	[+7.6]:[+7.6]	[+11.5]:[+11.5]
Ares V Cost (\$M) DDTE /1 Flt Unit	\$6872 / \$827	\$8107 / \$1088	\$8165 / \$1132	\$8861 / \$1194	\$9142 / \$1275	\$9142 / \$1275
Altair Cost (\$M) DDTE / 1 Flt Unit	\$4126 / \$595	\$4126 / \$595	\$4126 / \$595	\$4022 / \$580	\$4022 / \$580	\$4022 / \$580
PLOM [Ares V]: [Altair] Total	[1/66(TLI)]:[1/75] 1/35	[1/62(TLI)]:[1/75] 1/34	[TBD]: [1/75]	[1/62(TLI)]:[1/91]; [TBD LOI stage] 1/34	[1/64(LOI)]:[1/91] 1/38	[1/64(LOI)]:[1/91] 1/38 ate Equivalent I LI Perf.

3

- Moving LOI function to Ares V requires a 3 stage vehicle
 - additional \$1.0B DDTE cost
 - less than half a metric ton gain at TLI above the current Ares V LCCR configuration

LOI function retained on lander descent stage

Altair Vehicle Architecture

Three Primary Elements

- Descent Module
 - Provides propulsion for TCMs, LOI, and powered descent
 - Provides power during lunar orbit, descent, and surface operations
 - Serves as platform for lunar landing and liftoff of ascent module
 - Designed to fit within 10 meter shroud
 - Liquid oxygen / liquid hydrogen propulsion
 - Fuel cell powered
- Ascent Module
 - Provides habitable volume for four during descent, surface, and ascent operations
 - Contains cockpit and majority of avionics
 - Provides propulsion for ascent from lunar surface after surface mission (hyper or LOX/Meth)
 - Battery Powered
- Airlock
 - Accommodates two crew per ingress / egress
 - Connected to ascent module via short tunnel
 - Remains with descent module on lunar surface after ascent module liftoff

Altair Configuration Variants

Sortie Variant

Descent Module Ascent Module Airlock

Outpost Variant

Descent Module Ascent Module

Cargo Variant

Descent Module Cargo on Upper Deck

Altair Technology Prioritization Results

Rank	Technology Need		
1	Highly Reliable LOX/LH2 Throttling Engine		
2	Cryogenic Fluid Management		
3	LO2/LCH4 Main Engine & RCS		
4	Composite Primary Structure Technology		
5	Hazard Detection and Avoidance		
6	Radiation Effects Mitigation and Environmental Hardness		
7	CO2 and Moisture Removal System		
8	Low Cycle-Life Rechargeable Battery		
9	Low Mass, High Reliability PEM Fuel Cell		
10	High Pressure Oxygen		
11	Lander Dust Mitigation		
12	Sublimator- driven Coldplate		
13	Crew Composite Pressure Vessel Design and Validation		

Altair Summary

- Current Altair design demonstrates a lander design that closes within the Constellation transportation architecture
- The Project has taken methodical, risk informed design approach
- Altair has developed a detailed bottoms-up cost estimate
- A design concept exists
 - Current Master Equipment List includes over 6000 items
 - CAD models
 - FEM and Nastran analysis
 - Integrated schematics and individual system schematics, etc.
- The current design concept is not necessarily "the" design
 - Too early to downselect to point design
 - However, a critical part of the process to:
 - Understand design drivers well enough to write good requirements for SRR
 - Ensures integration with overall Cx architecture
 - Ensures a viable mission concept exists

